51 research outputs found

    Addressing robustness in time-critical, distributed, task allocation algorithms.

    Get PDF
    The aim of this work is to produce and test a robustness module (ROB-M) that can be generally applied to distributed, multi-agent task allocation algorithms, as robust versions of these are scarce and not well-documented in the literature. ROB-M is developed using the Performance Impact (PI) algorithm, as this has previously shown good results in deterministic trials. Different candidate versions of the module are thus bolted on to the PI algorithm and tested using two different task allocation problems under simulated uncertain conditions, and results are compared with baseline PI. It is shown that the baseline does not handle uncertainty well; the task-allocation success rate tends to decrease linearly as degree of uncertainty increases. However, when PI is run with one of the candidate robustness modules, the failure rate becomes very low for both problems, even under high simulated uncertainty, and so its architecture is adopted for ROB-M and also applied to MIT’s baseline Consensus Based Bundle Algorithm (CBBA) to demonstrate its flexibility. Strong evidence is provided to show that ROB-M can work effectively with CBBA to improve performance under simulated uncertain conditions, as long as the deterministic versions of the problems can be solved with baseline CBBA. Furthermore, the use of ROB-M does not appear to increase mean task completion time in either algorithm, and only 100 Monte Carlo samples are required compared to 10,000 in MIT’s robust version of the CBBA algorithm. PI with ROB-M is also tested directly against MIT’s robust algorithm and demonstrates clear superiority in terms of mean numbers of solved tasks.N/

    Solving the Task Variant Allocation Problem in Distributed Robotics

    Get PDF
    We consider the problem of assigning software processes (or tasks) to hardware processors in distributed robotics environments. We introduce the notion of a task variant, which supports the adaptation of software to specific hardware configurations. Task variants facilitate the trade-off of functional quality versus the requisite capacity and type of target execution processors. We formalise the problem of assigning task variants to processors as a mathematical model that incorporates typical constraints found in robotics applications; the model is a constrained form of a multi-objective, multi-dimensional, multiple-choice knapsack problem. We propose and evaluate three different solution methods to the problem: constraint programming, a constructive greedy heuristic and a local search metaheuristic. Furthermore, we demonstrate the use of task variants in a real instance of a distributed interactive multi-agent navigation system, showing that our best solution method (constraint programming) improves the system’s quality of service, as compared to the local search metaheuristic, the greedy heuristic and a randomised solution, by an average of 16, 31 and 56% respectively

    Mobile agent approach to networked robots

    No full text

    Spreading Out: A Local Approach to Multi-robot Coverage

    No full text
    The problem of coverage without a priori global information about the environment is a key element of the general exploration problem. Applications vary from exploration of the Mars surface to the urban search and rescue (USAR) domain, where neither a map, nor a Global Positioning System (GPS) are available. We propose two algorithms for solving the 2D coverage problem using multiple mobile robots. The basic premise of both algorithms is that local dispersion is a natural way to achieve global coverage. Thus, both algorithms are based on local, mutually dispersive interaction between robots when they are within sensing range of each other. Simulations show that the proposed algorithms solve the problem to within 5-7% of the (manually generated) optimal solutions. We show that the nature of the interaction needed between robots is very simple; indeed anonymous interaction slightly outperforms a more complicated local technique based on ephemeral identification
    • …
    corecore